Scheme of Work 2024/25

Geology A Level Yr 12

9thTopic F1:a. The Earth's elements mayCandidates should be aware ofSummer workSeptELEMENTS,be classified according to thethe four-fold classification andF1 Workbook	vork in
9thTopic F1:a. The Earth's elements mayCandidates should be aware ofSummer workSeptELEMENTS,be classified according to thethe four-fold classification andF1 Workbook	iork in
Sept ELEMENTS, be classified according to the the four-fold classification and F1 Workboo	
	DOK
MINERALS AND Goldschmidt system its delineation and be able to Goldschmidt	idt Ppt.
ROCKS Key Idea (lithophile, siderophile, name at least one element Three online	ne quizzes on
1: The Earth is chalcophile, atmophile) which from each group. minerals	
composed of aids subdivision of the Earth lithophile: elements that (1) Pro-	o-study on Decimal
rocks which have on the basis of geochemistry combine well with oxygen and	d Standard Form
distinctive (atmosphere, hydrosphere, and are concentrated in the	
mineralogies and crust, mantle and core). crust; siderophile: 'iron loving'	
textures elements typical of the core;	
chalcophile: 'ore loving'	
elements which combine	
well with sulfur near the	
Earth's surface;	
atmophile: volatile elements	
within liquids and gases on or	
above the Earth's surface.	
b. The bulk composition of the Candidates should know that	
Earth is comparable with that evidence for the internal	
of undifferentiated meteorites composition of the Earth partly Meteorite P	Ppt.
(chondrites).	•
meteorites.	
Recognition of the relative	
c. The Earth's crust is Candidates should know that abundance of O. Si. Al. Fe. Ca.	
composed of eight main 99% of the Earth's crust (by Na. K and Mg in the crust and	
elements. weight) is made up of just 8 the role of the silicates as rock-	Ppt.
elements and their relative forming minerals Bingo cards	ls
order of abundance	

	d. S roc buil tetr and	Silicates are the commonest ck-forming minerals and are ilt from silicon-oxygen trahedra (single, chain, sheet id framework silicates).	Candidates should know the chemical structure of silicates as it relates to the physical properties of minerals (e.g. crystal shape, hardness and cleavage) rather than details of the chemical variations between minerals. As exemplified by olivine (single tatabodra), augita/pyrayapa	Simple analysis of silicate mineral structures from models and diagrams.	Silicates Ppt Silicate minerals Molymods
1.01h			(single chain), hornblende/amphibole (double chain), micas (sheet) and quartz/feldspar (framework).		
16 th Sept	e. N occ con con exp forr dist ato pro be	Minerals are naturally curring inorganic chemical mpounds or elements with mpositions that may be pressed as chemical mulae. Minerals have stinct chemical compositions, omic structures and physical operties by which they may e identified.	Candidates should be able to investigate the physical/chemical properties of minerals (including unfamiliar minerals) in the laboratory and field. Candidates should be able to measure the density of minerals using an appropriate technique and evaluate the accuracy of such calculations.	SP1: Investigation of diagnostic properties of minerals: colour, crystal shape, cleavage, fracture, hardness, relative density, streak, lustre, reaction with cold dilute (0.5 mol dm-3) hydrochloric acid. SP2: Measurement of the density of minerals.	Minerals Ppt. F1 Project work (2) Pro-study on significant figures and estimation Minerals: Quartz, fluorite, gypsum, pyrite Minerals for SP1: A = Plagioclase felspar, B = Gypsum, C = Haematite, D = Quartz, E = Calcite
			Candidates will be required to use a mineral data sheet of diagnostic mineral properties in their identification of the stated minerals.	Recognition, using appropriate tests, of the following rock- forming minerals (as specified on the mineral data sheet available for use in the examination) from their diagnostic properties: quartz, calcite, feldspars (orthoclase, plagioclase), augite, hornblende, olivine, micas (biotite, muscovite), haematite, galena, pyrite, chalcopyrite,	Minerals for SP2: A = Pyrite, B = Galena, C = Baryte D = Quartz, E = Hornblende, F = Calcite Minerals for SP3: A = Pyrite, B = Quartz, C = Haematite, D = Halite, E = Biotite Mica, F = Sphalerite, G = Gypsum, H = Galena, I = Calcite, J = Plagioclase feldspar

		Candidates should be able to use flow charts to classify minerals (including unfamiliar minerals) from their observed physical/chemical properties.	fluorite, barite, halite, gypsum, garnet, chiastolite/andalusite. SP3: Application of classification systems using distinguishing characteristics to identify unknown minerals.	
23 rd Sept	 f. Rocks are composed of aggregates of minerals, pre- existing rocks or fossils. g. Igneous, sedimentary and metamorphic rocks display differences of composition and texture that reflect their mode of origin. 	Candidates should be able to determine the origin of igneous, sedimentary and metamorphic rocks from their differing textures and mineralogies (including unfamiliar rocks) in the laboratory and field.	Observation and investigation of hand specimens of a variety of rocks (including sampling in the field) in order to: identify and interpret component composition interpret colour and textures (crystalline/clastic; crystal or grain size/shape; sorting; foliation; mineral alignment/bedding/crystalline banding) and hence deduce the mode of origin of the rock as igneous, metamorphic or sedimentary.	Two online quizzes on sedimentary rocks (3) Pro-study on Order of magnitude calculations Starter: A = Granite, B = Sandstone, C = Gneiss, D = Quartz Rocks: E = Schist, F = Conglomerate, G = Pink Granite Rock descriptions: Basalt, Coarse Sandstone, Andalusite Shale, Shelly Limestone, Gneiss, Conglomerate, Pink Granite
		Scientific drawings to include samples in the laboratory and the field using appropriate scales.	SP4: Production of scaled annotated scientific drawings of rock samples from hand samples using a light microscope, or hand lens observation. Use and manipulation of the magnification formula magnification = size of image size of real object	Assessment 1 (minerals)

30 th	Topic E2:	a Extornal onorgy: solar			Sodimontary Pocks Workbook
Sont		booting of the Earth's surface			
Sehr		drives the water cycle and			Sed Project work 1
	PROCESSES OF	influences weathering and			
	THE	erosional processes			(1) Pro-study on
					Lincertainties
		b. Physical and chemical	Candidates should know that		Oncertainties
	Key Idea 1: The	weathering of rocks occurs at	the products of weathering are		Starter: Granite
	mineralogy and	the Earth's surface and	rock fragments unreactive		Oldrice: Ordrine
	texture of	provides	grains (e.g. guartz) clay		
	sedimentary	the raw materials for new	minerals (e.g. kaolinite) and		
	rocks are the	sedimentary rocks:	ions in solution		
	result of the				
	surface process	(insolation, freeze/thaw)	Candidates need only know		
	part of the rock	breaks rock down into smaller	the processes outlined.		
	cycle, driven	fragments			
	by external	□ chemical weathering of			
	energy sources	silicate and carbonate rocks			
		(hydrolysis, carbonation,			
		solution and oxidation)			
		produces a range of new			
		minerals and solutions			
		together with residual,			
		resistant minerals			
		biological weathering			
		involves physical and chemical			
		changes.			
		c. Surface materials are	The surface processes part of	Recognition and use of	
		transported by a range of	the rock cycle facilitates,	appropriate units in	Erosion practical: A =
		erosional agents and are	(though not exclusively)	calculations (MPS1).	mudstone, $B = Conglomerate$,
		deposited as sediments:	training in, and assessment of,		C = Sandstone, D = Breccia, E
		□□erosion (abrasion, attrition)	some mathematical skills.	Construction and interpretation	= Coarse Sandstone
		□ □ transport (traction,		of frequency tables and	
		saltation,	For exemplification of	diagrams, bar charts and	
		suspension, solution)	mathematical skills see	histograms (MPS10).	
		□□deposition selectively	Mathematical Guidance for A		
		concentrates products in	level Geology.	Finding of arithmetic means	
		particular environments - grain		(MPS10).	
		size related to energy of		Understanding of the principles	
		depositional environment;		of sampling as applied to	
		dominance of quartz and		scientific data (MPS8).	

	muscovite in coarse fraction and clay minerals in fine fraction; flocculation; precipitation.		Understanding of the measures of dispersion, including standard deviation and interquartile range (MPS10). Selection and use of a statistical test (MPS 17-19).	
7 th Oct	 d. Different sedimentary environments may be identified by diagnostic sedimentary structures, rock textures, mineralogy and foss content. e. A study of fluvial, marine, and aeolian sediments demonstrates these differences. 	il Candidates should be aware of the link between process and product in their studies of the stated sedimentary environments: • fluvial (rivers, deltas, alluvial fans and playa lakes) • aeolian (wind dominated e.g. desert dunes) • marine (shallow water – lagoon/reef/beach systems) • marine (deep water – submarine fan turbidites)	Description of sedimentary rocks in hand specimen, rock exposures and diagrams/photographs from observation of their colour, texture (use of sediment comparators to determine grain size, shape and sphericity), (coarse >2 mm, fine <1/16 mm), reaction with 0.5 mol dm-3 hydrochloric acid, mineralogy and other diagnostic features.Investigation of textures of sediments from different depositional environments.SP5: Production of full rock description of macro and micro features from hand specimens and unfamiliar field exposures of sedimentary rocks in order to interpret component composition, colour and textures, to identify rock types and to deduce their environment of deposition.	Sed Project work 2 (5) Pro-study on Ratio, fractions and percentages Starter for Desert: Desert Environment Starter for Marine sediments: Coral limestone, beach conglomerate, greywacke
14 th Oct		Candidates should be able to explain the formation of the stated sedimentary structures.	Interpretation of maps, photographs and graphic logs showing the following sedimentary features: bedding	Sedimentary structure Ppt Sed Project work 3

		Candidates need only have knowledge of the sedimentary rocks indicated. Candidates should be able to identify the stated sedimentary	crossbedding, graded bedding, laminations, desiccation features, ripple marks (symmetrical and asymmetrical), sole structures (load/flame, flute cast). Identification in hand specimen of the following sedimentary rocks from their composition, texture and other diagnostic features: sandstones (orthoquartzite, arkose,	(6) Pro-study on Calculating circumference, surface area and volumes of regular shapes
		rocks in hand specimen and the field. It is understood that it might not be possible to investigate the full range of rocks in the field or that this list is exclusive.	greywacke), shale/mudstone, limestones (shelly, oolitic, chalk), conglomerate, breccia. Investigation of contrasts between fluvial, marine and aeolian sediments.	
21 st Oct		For exemplification of mathematical skills see Mathematical Guidance for A level Geology .	Use of logarithms in relation to quantities that range over several orders of magnitude (MPS7).	
		The mathematical skills identified are not exclusive to this section of the specification.	Construction and interpretation of frequency tables and diagrams, bar charts and histograms (MPS12).	
			Knowledge of the characteristics of normal and skewed distribution (MPS11).	
			Plotting of variables from experimental or other circular data (MPS14).	
			Understanding of the terms mean, median and mode (MPS10).	

			Selection and use of a statistical test (MPS17-19). Plotting of two variables from experimental or other linear data (MPS16).	
4 th Nov	f. Sedimentary rocks may	Candidates should be able to	Analysis of biogenic	Rocks for starter: Coral
NOV	organic material (limestone,	precipitation of evaporate	rocks.	conglomerate
	material from solution	terms of their relative		Sedimentary graphs homework
	(evaponies).	(calcite/dolomite		(7) Pro-study on
		potassium/magnesium salts).		equations
	g. Sedimentary rocks exhibit differences in texture which influences porosity and permeability: grain angularity, sphericity, size, sorting, which reflects:	Candidates should be aware of the range of texture in descriptive terms (as used on a grain size comparator): • angularity – very angular to well rounded • sphericity – high to low sphericity • size – reference to the Wentworth scale • sorting – very well to poorly sorted	Investigation of the concept of 'sediment maturity'. Immature sedimentary rocks characterised by a wide range of mineral compositions and/or lithic clasts; mature sedimentary rocks with restricted mineralogies dominated by mineral species resistant to weathering and erosional processes.	
	pressure solution).	For exemplification of mathematical skills see Mathematical Guidance for		

1 4 th	Kay Idaa 2:		A level Geology. The mathematical skills identified are not exclusive to this section of the specification.	Understanding that y = mx + c represents a linear relationship (MPS16).	
11 [™] Nov	Key Idea 3: Sedimentary processes can be understood using scientific modelling	 a. Sedimentary processes which are infrequent and/or difficult to observe (e.g. turbidity currents) can be understood and explained using scientific models. b. The distribution of environments represented by rocks in a vertical stratigraphic column is related to the distribution of those environments laterally (Walther's Law); marine transgressions and regressions, diachronous 	Application of the Hjulstrom graph. Determination of the slope and intercept of a linear graph Application of Walther's Law to extend interpretation from two- dimensional data (borehole logs, cliff sections, graphic logs) to three-dimensions.	Candidates are expected to relate vertical sequences (e.g. outcrop of borehole) with the lateral changes in facies identified in modern sedimentary environments (e.g. a delta) and understand that lithofacies are not necessarily time- dependent. <u>http://www.earth-science- activities.co.uk/facies%20</u> <u>diachronism.htm</u>	Assessment on sedimentary rocks
18 th Nov	Topic F2: SURFACE AND INTERNAL PROCESSES OF THE ROCK CYCLE Key Idea 2: The formation and alteration of igneous and metamorphic rocks result from the Earth's internal energy	 a. Internal energy: The Earth's internal geological processes result from the transfer of energy derived from radiogenic and primordial heat sources. Heat is transferred from the mantle to the surface by conduction and convection, with temperatures of rocks remaining below melting point (except locally). b. Igneous rocks are the 	Candidates should be able to interpret pressure (depth) temperature graphs and use them to calculate geothermal gradients. For exemplification of mathematical skills see Mathematical Guidance for A level Geology. The mathematical skills identified are not exclusive to this section of the specification.	Interpretation of evidence for surface heat flow and temperature variation with depth through simple analysis of the geothermal gradient (geotherm). Solving of algebraic equations (MPS7). Calculation of the rate of change from a graph showing a linear relationship (MPS16).	Igneous Rocks workbooks IG 1 Project work (9) Pro-study on Data and statistical analysis: data analysis; univariate data analysis
		 b. Igneous rocks are the products of cooling of magma 		The recognition of plutons, dykes, sills, lava flows and	

	in bodies of various sizes and shapes and pyroclastic event	l S.	pyroclastic deposits by interpretation of maps, sections and photographs. Observation and investigation of igneous rocks to deduce the cooling history: □□crystal size: coarse (>3 mm), medium (1-3 mm), fine (<1 mm)	
			 Crystal shape: euhedral, subhedral, anhedral texture: equicrystalline, porphyritic, vesicular, glassy, fragmental (tuff) 	
			□□structure: pillow structure, aa/pahoehoe surfaces, columnar joints.	
25 th Nov			SP8: Production of full rock description of macro and micro features from hand specimens and/or unfamiliar field exposures of igneous rocks in order to interpret component composition, colour and textures, to identify rock type and to deduce their cooling history.	IG 2 Project work (10) Pro-study on Data and statistical analysis: data analysis; Measures of central tendency
		Candidates need only have knowledge of the igneous rocks indicated. Candidates should be able to identify the stated igneous rocks in hand specimen and the field. It is understood that it might not be possible to investigate the full range of rocks in the field or that this list	Identification in hand specimen of the following igneous rocks from their composition, texture and other diagnostic features: Silicic: granite Mafic: gabbro, dolerite, basalt	
2 nd		is exclusive. For exemplification of	Use of ratios, fractions and	IG 3 Project work
Dec		mathematical skills see	percentages (MPS5).	

		Mathematical Guidance for A level Geology.	Calculation of the	(11) Pro-study on Data and statistical analysis: data
		The mathematical skills identified are not exclusive to this section of the specification	circumterences, surface areas and volumes of regular shapes (MPS6).	analysis; Measures of dispersion
			Construction and interpretation of frequency tables and diagrams, bar charts and histogram.	
			Knowledge of the characteristics of normal and skewed distributions (MPS12).	
				laneous rocks assessment
9 th	c. Partial melting of rock at			IG 4 Project work
Dec	depth to form magma occurs in a number of different interplate and intraplate tectonic settings:		Investigation of the role of rising convection cells in decompression melting.	(12) Pro-study on Data and statistical analysis: data analysis; Measures of shape
	 wedge generates andesitic magma in mantle plumes (hotspots) partial melting of mantle rocks generates basaltic magma in deeply buried lower continental crust during orogeny – melting and assimilation of crustal material generates granitic magma. 		Investigation of global distribution of mantle plumes from maps.	

16 th Dec		 d. Volcanic hazards result from: blast/explosion ash fall, pyroclastic flows (nuées ardentes) and gases lava flows debris flows and mudflows (lahars). 	Candidates are expected to have studied specific examples of the stated hazards and monitoring techniques but will not be required to recall details of these examples in an assessment.	Investigation, using geological data from a wide variety of volcanic monitoring techniques (including ground deformation, gravity and thermal anomalies, gas emissions and seismic activity), of the risk of volcanic hazards and the extent to which they can be managed and controlled in order to reduce risk.	(13) Pro-study on Data and statistical analysis: data analysis; Probability
		e. The nature of the volcanic hazard is linked to the composition, viscosity and gas content of the magma.	Candidates are expected to have studied the hazards associated with explosive and effusive activity and their links to silica and gas content that affects viscosity.		
Christn	nas				
6 th Jan	Topic G1 : rock forming processes Key Idea 1:The generation and evolution of magma involves different processes	 a. Igneous rock composition at interplate and intraplate settings depends on: origin of the parent magma (mantle or crust) magma evolution: Differentiation and fractionation (continuous and discontinuous reaction series – Bowen); gravity settling to give cumulates magma contamination: incorporation of rock material (xenoliths); magma mixing, during 	Candidates should be able to use a scientific calculator to establish time from given decay rate equations e.g. $t = (T_{\frac{1}{2}}/\ln 2) \ln(N_d/N_p + 1)$. For exemplification of the mathematical skills associated with the decay rate equation see Mathematical Guidance for A level Geology.	Evaluation of the role of temperature, pressure and water content in determining the melting points of rocks. Simple calculation of depth of formation of granite magma by crustal melting through interpretation of graphs showing continental geotherm and melting temperatures of wet and dry lower crustal material. Calculation of the age of a mineral sample using the decay rate equation $-\lambda t$ $N = N_0 e$ (MPS7)	(14) Pro-study on Data and statistical analysis: data analysis; circular data

rise and emplacement, leading to change of composition and physical properties (enclaves). b. The substitution of one element for another in the crystal structure of a mineral depends upon atomic radius and valency; solid solution as exemplified by olivine and plagioclase feldspar	Candidates should be able to interpret phase diagrams between solid solution end members from: • Ca-rich plagioclase (Albite) to Na rich (Anorthite) Mg-rich olivine (Fosterite) to Fe-rich (Fayalite).	Use of logarithms in relation to quantities that range over several orders of magnitude. Interpretation of logarithmic plots. Calculation of percentage error in radiometric dating results (MPS7) Investigation of magma crystallisation and differentiation processes using phase diagrams (plagioclase feldspar, olivine).	
c. The formation of magma chambers under ocean ridges and rises can be interpreted from models.	Candidates should be familiar with new models of ocean ridge formation (using data from seismic tomography and de ep ocean drilling) involving • symmetrical and asymmetrical	Analysis of ocean survey data to investigate current models of how oceanic ridges (particularly mid ocean ridges-MORs) are formed (e.g. RRS James Cook – 2016).	
	 spreading ocean core complexes (OCC) 		(7) Models of seafloor spreading
	• the		
 1	L	I	1

			significance		
			of		
			serpentinite.		
			https://teacheratseablog.w		
			ordpross.com/tag/scionco/		
			orupress.com/tag/science/		
			https://www.cardiff.ac.uk/earth-		
			ocean-sciences/about-		
			us/supporting-education		
13 th	Key Idea 2: The	f. <u>Metamorphism</u> involves	Candidates should be aware of	Interpretation of the following	Metamorphic Rocks Workbook
Jan	mineralogy and	mineralogical and/or textural	the concept of metamorphic	metamorphic features using	
	texture of	change of pre-existing rocks in	grade.	simplified geological maps and	(15) Pro-study on Data and
	metamorphic	response to changes in		photographs: contact aureoles,	statistical analysis: data
	rocks are	temperature and/or pressure.		metamorphic foliations.	analysis; Polar equal area
	determined by the				"stereonets"
	composition of	g. Contact (thermal) and	For exemplification of	Understanding that $y = mx + c$	
	the parent rock	regional metamorphism	mathematical skills see	represents a linear relationship	
	and the	produce distinctive	Mathematical Guidance for A	(MPS16).	
	conditions of	mineralogical and textural	level Geology.		
	metamorphism	changes:		SP10: Production of full rock	
		□ □ non-foliated in contact	The mathematical skills	description of macro and micro	
		metamorphism	identified are not exclusive to	features from hand specimens	
		□ □ foliation (slaty cleavage,	this section of the specification.	and/or unfamiliar field	
		schistosity and gneissose		exposures of metamorphic	
		banding) in regional	Candidates should be aware of	rocks in order to interpret	
		metamorphism.	the metamorphic changes in	component composition, colour	
			chemically varied clay-rich	and textures, to identify rock	
			rocks (e.g. shale) compared to	type and to deduce the	
			those dominated by quartz and	temperature and pressure	
			calcite (sandstones and	conditions of their formation.	
			limestone).		
				Identification in hand specimen	
			Candidates need only have	of the following metamorphic	
			knowledge of the metamorphic	rocks from their composition,	
			rocks indicated.	texture and other diagnostic	
				features: marble,	
				metaquartzite, spotted rock,	
				hornfels, slate, schist, gneiss.	

		Candidates should be able to identify the stated metamorphic rocks in hand specimen and the field. It is understood that it might not be possible to investigate the full range of rocks in the field or that this list is exclusive.		
20 th Jan	a. Igneous and sedimentary rocks contain minerals that are stable or metastable at the temperature and pressure of their formation. Changes in temperature and/or directed stress over time lead to the growth of new minerals with different stability fields.	Analysis of simple pressure- temperature- time paths involved in contact and regional metamorphism. Simple analysis of phase diagrams showing stability fields of selected metamorphic minerals: kyanite/sillimanite/ andalusite	Candidates should appreciate that prograde metamorphic effects result from increases in temperature and (usually) pressure. Retrograde metamorphism (though uncommon) allows prograde mineral assemblages to revert to those more stable at less extreme temperature and pressure. Detailed knowledge of metamorphic facies is not required.	Convergent Plate Boundary Project work (16) Pro-study on Data and statistical analysis: data analysis; Bivariate data analysis; Scatter diagrams
	 b. Mineralogical changes during metamorphism depend on the composition of the parent rock and the temperature/pressure field. c. Contact and regional metamorphism of mudstone/shale lead to the growth of new minerals indicative of the type and grade of metamorphism: low to high grade metamorphism. 	SP20: Investigation of contact metamorphism using the 'Metamorphic Aureole' simulation experiment.	Candidates are expected to use evidence from index minerals to arrange clay- rich rocks in order of their increasing grade	
	-			Mid-Year Test

27 th Jan		d. Contact, regional and dynamic metamorphism result from different pressure/temperature conditions and produce characteristic textural changes associated with recrystallization, ductile flow and shear	Study of diagrams/photomicrograp hs to identify and analyse the following metamorphic textures: granoblastic; porphyroblastic; mylonitic.		(17) Pro-study on Data and statistical analysis: data analysis; Bivariate data analysis; Spearman's Rank Correlation Coefficient (r _s)
Feb	SURFACE AND INTERNAL PROCESSES OF THE ROCK CYCLE Key Idea 3: Deformation results when rocks undergo permanent strain in response to applied tectonic stresses and can be interpreted using geological maps Topic F2: SURFACE AND INTERNAL PROCESSES OF THE ROCK CYCLE Key Idea 3: Deformation results when rocks undergo permanent strain in response to	 a. Rock deformation can be interpreted by reference to Hooke's Law: Simple stress - strain curves showing elastic/brittle and ductile/plastic behaviour; elastic limit, permanent strain and fracture point. a. The nature of rock deformation is determined by the competence of the parent rock and conditions during deformation (temperature, confining pressure, strain rate). b. Evidence of rock deformation includes dipping beds, folding, faulting and unconformities. 	Candidates should be able to draw and interpret stress-strain curves. Candidates are expected to predict the effects of deformation (brittle fracture and ductile flow) on rocks of different competences. Candidates should be able to use trigonometry (sin, cos, and tan) in determining map or cross section parameters (e.g. true thickness, vertical thickness width of outcrop, angle of dip).	 Weasurement and description of evidence obtained by sampling of rock deformation in the field (or from photographs). Use of simple calculations to establish the amount of deformation (percentage of crustal shortening). Recognition of the differences in deformation of competent and incompetent rocks. Use of sin, cos and tan in physical problems. (MPS7) Recognition and interpretation of structural features through study of photographs, diagrams, sections, geological maps and in the field. 	(18) Pro-study on Data and statistical analysis: data analysis; Chi-squared (X ²) test

applied tectonic stresses and can be interpreted using geological maps	Candidates should be aware of random, systematic and stratified sampling techniques relevant to an investigation. The sampling skills identified	
	are not exclusive to this	
	section of the specification (MPS8).	

10 th Feb	Topic G2: ROCK DEFORMATION Key Idea 1: Geological structures are formed when rock	c. Dipping beds are the results of tectonic/gravity induced stresses, caused by plate movement, that distort beds from the horizontal.			(19) Pro-study on Data and statistical analysis: data analysis; Mann-Whitney U-test
	material undergoes deformation	 d. Folding results when compressional stresses exceed the yield strength of a rock. b. Fold characteristics; amplitude, wavelength, interlimb angle (open, tight, isoclinal), axial plane attitude (upright, inclined, overturned, recumbent), plunging folds. 	Candidates should be aware that fold symmetry is a function of the length of the fold limbs rather than the dip of opposing limbs. Symmetric folds have limbs of equal length; asymmetric folds have limbs of different lengths.	Recognition of fold elements: limb, hinge, axis, axial plane trace, fold symmetry (as a function of limb length), antiform, synform, anticline, syncline. Identification of plunge direction (of axis) and axial planar cleavage.	
				Represent limb dip and strike data on a polar equal area stereonet (polar plots only not projections or great circles) (MPS15).	
		e. Faulting results when applied compressional, tensional or shear tectonic stresses, caused by plate movement, exceed the fracture strength of a rock.	Candidates are not required to have knowledge of other fault elements.	Plotting of variables from experimental or other circular data.	
		c. Fault type is determined by the orientation of the principal stresses. Technical terms to describe fault elements: slickensides, fault gouge, fault breccia.	Candidates will be expected to interpret the effect of dip-slip or strike- slip relative movement, but not oblique fault movement.	Recognition of fault characteristics: □ □ dip-slip: normal, reverse,	
				thrust; throw - amount, relative movement of footwall/hanging wall strike-slip: left/ sinistral, right/dextral	

	f. Unconformities represent a hiatus in the geological record resulting from a combination of Earth movements, erosion and sea level changes.	 □fault displacement (= net slip). Analysis of the relationship between fault type (normal, reverse/thrust, strike-slip) and the orientation of the principal stress components (σ max, σ int, σ min). Recognition of unconformities and their use in relative dating. 	
	sea level changes.		

Half ter	m				
24 th Feb		g. The nature of outcrop patterns formed by the intersection of geological structures with a topographic surface are displayed on geological maps.		Use of geological maps, block diagrams, boreholes, cross- sections and photographs to interpret the geology of an area. Construction of geological cross-sections from simplified geological maps. Ordering the geological sequence of events in an area from the study of a simplified geological map and/or section.	(20) Pro-study on Data and statistical analysis: data analysis; Multivariate data analysis;Triangular plots
3 rd Mar					Pro-study 2002 cross section
10 th Mar		d. Structural reactivation: earlier-formed faults can be reactivated during later tectonism; folds may be refolded. Structural inversion: reactivation of normal faults in compression or reverse faults/thrusts in extension.		Recognition of evidence for fault reactivation on geological maps, cross- sections, diagrams and photographs.	Pro-study 2003 cross section
		e. The nature of outcrop patterns formed by the intersection of geological structures with a topographic surface are displayed on geological maps.	For exemplification of mathematical skills see Mathematical Guidance for A level Geology . The mathematical skills identified are not exclusive to this section of the specification.	Calculations involving measurements of: • true bed thickness • vertical bed thickness • width of outcrop • angle of dip.	

				Use of sin, cos and tan in physical problems (MPS7).	
17 th Mar	Topic F3: TIME AND CHANGE Key Idea 1: Study of present day processes and organisms enables understanding of changes in the geological past	 a. Much of the rock record can be interpreted in terms of geological processes that are operating today by applying the Principle of Uniformitarianism: the present is the key to the past. b. The study of modern environments enables an interpretation of the sedimentary rock record within the rock cycle model. 	Candidates should be able to apply the Principle of Uniformitarianism to evidence of rock cycle processes through Deep Time. A simple understanding of the contributions made by James Hutton (unconformity, Deep Time) and William Smith (principle of faunal succession, first geological map).	Investigation of the development of <i>uniformitarianism</i> and the <i>rock</i> <i>cycle model</i> over time and the contributions of James Hutton and William Smith.	Palaeontology Workbook Uniformitarianism Project work Pro-study 2004 cross section
		c. The basic unit of sedimentary geology is the <i>facies</i> which reflects the depositional environment: lithofacies, biofacies.	Candidates should be aware that facies relates to the sum total of all the characteristics of a rock (composition, texture, fossil content) of a given age that change laterally. Lithofacies: a mappable unit based on petrological characters (e.g. texture and mineralogy) Biofacies: a mappable unit based on fossil content.		
24 th Mar		 d. Fossils are evidence of former life preserved in rocks. They provide information on the nature of ancient organisms and palaeoenvironmental conditions. e. Fossil morphology is used to interpret function/mode of life: Divalves (burrowers/non burrowers) 	Candidates are only required to have knowledge of those morphological features stated that are used to identify the group.	Appreciation of the basic distinctions between the following fossil groups based on their hard parts: brachiopods (marine) : shell shape and symmetry, pedicle and brachial valves, foramen, hinge line, muscle scars bivalves (marine/freshwater): shape and symmetry of valves, number and size of muscle scars, hinge line, teeth and	Fossil Project work 1 Pro-study 2005 cross section

		sockets, gape, pallial line and	
31 st Mar	c. Fossils are used in relative dating. d. The factors contributing to good zone fossils for relative dating/correlation are: wide and plentiful distribution, ready preservation, rapid evolutionary change, a high degree of facies independence, easy identification of index fossils. □ the utility of cephalopods as zone fossils assessed in relation to the above factors.	Carbon Control	Fossil Project work 2 Pro-study 2006 cross section
Easter			
22 nd Apr	 e. Fossil morphology is used to interpret function/mode of life: trilobites (benthonic/pelagic). d. The factors contributing to good zone fossils for relative dating/correlation are: wide and plentiful distribution, ready preservation, rapid evolutionary change, a high degree of facies independence, easy identification of index fossils. the utility of graptolites as zone fossils assessed in relation to the above factors. 	□ trilobites (marine) : cephalon, glabella, genal spines, eyes, thorax, number of thoracic segments, pygidium □ graptolites (marine) : stipes, thecae	Fossil Project work 3 Pro-study 2007 cross section
28 th April		□ □ plants (terrestrial): leaf, stem, root □ □ trace fossils (tracks and trails, burrows, coprolites).	Fossil Project work 4 Pro-study 2008 cross section

			 SP16: Application of classification systems using distinguishing characteristics to identify unknown fossils. SP17: Production of scaled, annotated scientific drawings of fossils, using a light microscope, or hand lens observation. 	
5 th May	 f. Preservation can give rise to a wide range of fossil materials: actual remains, hard parts, petrification by mineral replacement (calcification, silicification, pyritisation), carbonisation, moulds/casts. g. Fossils accumulations may be preserved without appreciable transportation (life assemblages) or preserved after transportation (death assemblages), or as derived fossils re-deposited in later sediment. h. The fossil record is: Diased, in favour of marine organisms, with body parts resistant to decay, that lived in low energy environments, and suffered rapid burial Dincomplete, as natural processes can distort or destroy fossil evidence (predation, scavenging, diagenesis, bacterial decay, weathering, erosion, metamorphism) 	Candidates should be able to determine transport history based on the degree of fragmentation, sorting or alignment of specimens within a fossil assemblage. Candidates should be aware of the importance and limitations of a <i>Lagerstätte</i> in providing exceptional preservation e.g. Ediacaran (Precambrian), Burgess Shale (Cambrian), Wenlock Series (Silurian), Solnhofen (Jurassic).	Analysis of modern and fossil assemblages to interpret the degree of transportation prior to burial.	Exceptional preservation Project work Pro-study 2009 cross section

Transfe	er Exams, half term, W	/EX week			
9 th	Topic F3: TIME	a. Geological events can be		Interpretation of age relations	Pro-study 2010 cross section
June	AND CHANGE	placed in relative time scales		of rocks and rock sequences	
	Key Idea 2 [.]	using criteria of relative age:		using maps, cross-sections	Transfer Exam
	Geological events	evolutionary change in fossils,		and in the field.	
	can be placed in	superposition of strata,			
	relative and	unconformities, cross-cutting			
	absolute time	relationships, included			
	scales	fragments, 'way-up' criteria.			
	couloc				
		b. Some rocks and minerals	Candidates will need to know	Simple use of the principles of	
		can be dated radiometrically to	that differences between the K	radiometric dating (decay rates	
		give an absolute age. This	– Ar and Sm – Nd methods	and the half-life concept) to	
		involves radioactive decay and	and understand the principle of	calculate the absolute age of a	
		the principles of radiometric	using the gradient of an	sample.	
		dating; radioactive series and	isochron to establish relative		
		radioactive half-life;	age in the latter. Candidates	Evaluation of the assumptions,	
		radiometric dating as	will not be expected to plot	accuracy and limitations	
		exemplified by Potassium –	isochrones or calculate age	inherent in the radiometric	
		Argon (40K– 40Ar), Samarium	from isochrons but simply	dating method.	
		– Neodymium (147Sm –	interpret relative age.		
4 Oth		143Nd).			Mana Futing During township
16		e. The geological column	Candidates need to be aware	Interpretation of the ages of	Mass Extinction Project Work
June		provides a means	of the classification and		Pro-study 2011 cross section
			column (based on the	geological column.	
		$\Box \Box dofining the absolute age of$	Chronostratigraphic chart)		
			eons eras periods		
		some events.			
			Candidates should be aware		
			that the Precambrian predates		
			the Phanerozoic era. but		
			knowledge of subdivisions of		
			the Precambrian is not		
			required.		
		f. The rock record indicates			
		changing conditions and rates			
		of processes with long periods			
		of slow change interrupted by			

		sudden catastrophism causing mass extinctions through geological time.			
23 rd June	Topic G3: PAST LIFE AND PAST CLIMATES Key Idea 1: Fossils provide evidence for the increasing diversity of life through geological time	 a. The fossil record provides evidence of changes in floras and faunas through geological time and the development of higher life forms: Precambrian life: life possibly evolved early in Earth history (3.8 billion years ago). The Ediacaran fauna represents the oldest diverse set of multicellular, soft bodied organisms (565 Ma) The Cambrian Explosion: the development of mineralised skeletons led to a 	Candidates should be familiar with the use of cladograms in showing the relationships amongst organisms and in the development of evolutionary trees. Candidates should be able to evaluate a range of hypotheses (environmental, developmental and ecological) that have been proposed for the sudden faunal diversification at the Precambrian-Cambrian boundary. <u>http://www.nature.com/new</u> <u>s/_what-sparked-the-</u>	 SP7: Use of photomicrographs to identify minerals and rock textures of sedimentary rocks in order to identify rock types and to deduce their environment of deposition. SP9: Use of photomicrographs to identify minerals and rock textures of igneous rocks to identify rock type and to deduce their cooling history. SP11: Use of photomicrographs to identify minerals and rock textures of metamorphic rocks to identify rock type and to deduce the 	Pro-study 2012 cross section
		wide variety of advanced marine invertebrates by the early Cambrian Life in the ocean diversified in stages identified by separate fauna: a basic understanding of the difference between Cambrian, Palaeozoic and modern faunas	Candidates will be expected to interpret modes of life from an analysis of vertebrate morphologies including: size, shape, dentition (carnivore v herbivore), pelvis, vertebrae, limbs, ornamentation (horns, plates, feathers).	temperature and pressure conditions of their formation. Interpretation of evolutionary diagrams. Analysis of the possible causes of faunal diversification at the Precambrian- Cambrian boundary. Interpretation of simple diversity curves (Sepkoski's curves).	

30 th June	The Phanerozoic was marked by the migration of organisms onto the land during the Palaeozoic. Vertebrate development of amphibians from fish, reptiles from amphibians and mammals and birds from reptiles. Colonisation of the land by plants.	Candidates should be aware of fossil evidence in vertebrate development (as exemplified by <i>lchthyostega</i> , <i>Archaeopteryx</i>).	Analysis of the morphology of fossil vertebrates (including dinosaurs) to interpret function/mode of life.	Pro-study 2013 cross section
7 th July	c. Mass extinctions are exemplified by the end- Permian (P-T) and Cretaceous-Paleogene (K- Pg) boundary events. d. There are alternative interpretations of evolutionary patterns based on the fossil record. Gradual change (gradualism) vs stability interrupted by sudden change (punctuated equilibrium).		 Evaluation of alternative interpretations of evolutionary patterns. Field trips to Stone Farm Rocks/RSPB Pulborough/Sussex coast before and after the summer SP12: Location of geological features onto a base map. SP13: Identification of the location of geological features in the field using six figure grid references on maps. SP14: Production of scaled, annotated field sketches at unfamiliar field exposures to record data relevant to an investigation. SP15: Measurement of dip 	Mass Extinction Project work Pro-study 2014 cross section

		and strike elements: dip	
		angle, dip and strike	
		directions of planar	
		surfaces, including valid	
		sampling, relevant to an	
		investigation.	