WK	TOPIC	DETAILS		
1	Recap	Review chain rule and connected rates of change, product and quotient rules Differentiate functions (including e and ln, not including trig) using the product and quotient rules, Differentiate products including chain rule Convex, concave functions, Points of Inflection		
2	Trig I	Reciprocal trig functions including relationships to sin/cos/tan, graphs, domain and range. New Pythagorean identities Inverse trig graphs		
3	Trig II	Compound angle formulae, double angle formula Geometric proofs of these. Harmonic functions		
4	Trig III	Small angle approximations – use standard ones Derivatives of sine/cosine from first principles Differentiating trigonometric functions (sin kx, cos kx etc)		
5	Integration by inspection	Integration of standard functions $(e^x, \frac{1}{x}, \sin x, \cos x)$ Integration of partial fractions		
6	Integration by substitution	Simple cases of integration using a substitution Understand as the reverse process of the chain rule. Include $\int \sin^2 t \cos t dt$ problems APPLICATION INTO NON-CONSTANT ACCELERATION		
HT				
7	Summing Series	Arithmetic series, term and sum, Proof of sum Recurrence relation & sigma notation Periodic sequences and their order Geometric series, term and sum, Proof of sum Problems in context		
8	Binomial Expansion	Expanding (1+ax) ⁿ Approximating		
9 RW	Implicit differentiation	First derivative only. Including a^x		
10	The Normal Distribution	The shape of the model Links to histogram. The bell curve shape, its symmetry and points of inflection ($x = \mu \pm \sigma$)		

			Understand and use the normal distribution as a model Find the mean, standard deviation. Understand what z values are, and how to 'code' real data into a standardised normal. Find probabilities using the normal distribution (sketching the graph) Find z values from probabilities. Find μ and σ and use simultaneous equations
11		'he Normal Distribution	The sample mean from a Normal Know that finding probabilities about a sample mean requires an adaption to the model $X \sim N\left(\mu, \left(\frac{\sigma}{\sqrt{n}}\right)^2\right)$ where <i>n</i> is the sample size. Using the normal for other tests and distributions Image: Comparison of the sample size is the sample size.
			Be able to use the normal to approximate binomial distribution (e.g. for large n and $p \approx 0.5$) Be able to apply a continuity correction Be able to conduct a hypothesis test on a normal distribution using the mean of a sample.
12	P	arametrics	Convert parametric equations to Cartesian form Using trigonometry or algebra, Recognise parametric functions as describing familiar curves Implications on the domain/range of Cartesian function Parametric equations from modelling (links to paper 3) Understand this as a consequence of the chain rule. Parametric integration. Parametric equations for motion
13	p	ntegration by arts R teachers	Simple cases of integration by parts including multiple uses (but excluding the reduction formulae) Understand as the reverse process of the product rule.
XH			
14		'rapezium Rule	
15		.og/Line hings	Use logarithmic graphs to estimate parameters in relationships of the form $y = ax^n$ and $y = kb^x$, given data for x and y. Plot log y against log x and obtain a straight line where the intercept is log a and the gradient is n. Plot log y against x and obtain a straight line where the intercept is log k and the gradient is log b.Image: the straight line where the

		Simplify using a change of variables (i.e. $y = ax^n$, $y = kb^x$ into a linear function			
16	Correlation & Regression Hypothesis testing on the PMCC	Know the difference between the explanatory and response variables. Be able to calculate the PMCC & interpret the correlation (correlation coefficients as measures of how close data points lie to a straight line). Know that correlation does not imply causation and understand the dangers of extrapolation Interpret correlation coefficient using p-value or critical value.			
17	Moments	 Why moments work and the simple cases: single forces with a perpendicular or non-perpendicular distance to the pivot. Get to grips with basic ideas: clockwise and anti-clockwise moments, using <i>τ</i> to represent 'taking moments', what the line of action is. Multiple forces: idea of labelling and collecting together all 			
18	Moments II	 clockwise moments and anti-clockwise moments (labelling one as positive and the other negative). An idea of resultant moment (which must include the direction of the resultant moment) and also equilibrium. THESE ONES SOLID. Use old Edexcel M1 to practice in simple contexts? Contexts – emphasise the 4 types and make sure to include the modelling notes in your discussions. Maybe teach through examples? Additional practice on non-uniform questions may be needed. (Share if find!) 	Integral maths: moments section 1: exercise level 1		
19	Vectors	Use vectors in two dimensions and in three dimensions Students should be familiar with column vectors and with the use of i and j unit vectors in two dimensions and i, j and k unit vectors in three dimensions. Revisit all key concepts using 3D vectors Vectors in mechanics Be able to sum vectors and apply laws of equilibrium to solve problems. Properties of kite, rhombus and trapezium and proving these with vectors Newton's second for motion in a straight line (// and perp. or as simple 2D vectors) APPLICATION INTO NON-CONSTANT ACCELERATION WITH VECTORS		A good F=ma question A good collinear/parallelogram problem Use textbook questions involving Rhombus kites etc, not just proving midpoints	
20	Differential Equations	Connected rates of change Construct differential equations in pure maths and in context Solving differential equation by separating variables Finding particular solutions			
HT					
21	Differential Equations	See above			

22	Projectiles	Model motion under gravity in a vertical plane using vectors: projectiles. Initial velocity could be given as a value which needs resolving, as a vector or as an unknown.		
23	Numerical methods PR self- assessment	Change of sign and continuity Iteration methods Be able to draw cobweb and staircase diagrams Solve $f(x) = 0$ numerically using Newton Raphson & other recurrence relations Understand how such methods can fail		
24	Proof	Proof by Contradiction		
25	Revision			
(26)	Revision			
EH				
27	Revision			
28	Revision			
29	Revision			
(30)				
(31)				
HT				
(32)			1	
33				
34				
35				
36				
37				