WK		TOPIC	DETAILS	SUGGESTED FLIPPED LEARNING ELEMENT	RESOURCES/ QUESTIONS	PS
1 SwC test	MATHEMATICS	Into & Test Indices Surds	Lesson 1: Intro Powerpoint inc Completing the Square Lesson 2: SwC assessmentUnderstand and use the laws of indices for all rational exponents. Rewriting in the form $\alpha x^m + \beta x^n$ using sliding and the 'V' Rewriting indices given a condition (such as in the form 4^p) Solving index equations.Manipulate and simplify algebraic surds Rationalising the denominator Use of surds in contexts and using Pythagoras, right- angletrigonometry.	Index rules Basic surd laws & rationalising the denominator (SwC vids)	Dice sheet for consolidation Exam questions (OCR): • Core 1 Winter 2010 #4 • Core 1 Summer 2015 #3 • Core 1 Summer 2016 #5ii MyMaths links: (Indices) https://app.mymaths.co.uk/598-lesson/indices-part-3 (Surds; section 2 – "Matching pairs") https://app.mymaths.co.uk/5861-lesson/surds-part-3 Integral resources: (Algebraic Indices Tarsia Puzzle) https://2017.integralmaths.org/pluginfile.php/16530/mod_book/chapter/614/Indices3HexJigS ol.pdf (Surds Dominoes) https://2017.integralmaths.org/pluginfile.php/16518/mod_book/chapter/612/Surds_Dominoe s.pdf (Solutions) https://2017.integralmaths.org/pluginfile.php/16518/mod_book/chapter/612/Surds_Dominoe s.Soln.pdf Underground Maths resource (Indices): Index Issues Underground Maths resource (Surds): Scary Sum Underground Maths resource (Surds): Nested Surds	1
2	S TO PURE	Sim. Eqns. Quadrati	Solve simultaneous equations in two variables by elimination and by substitution, including one linear and one quadratic equation. Solution of quadratic equations (by factorising, formula,	Standard methods Standard	Chase the Ace Prove the quadratic formula using $ax^2 + bx + c$ and completing the square	-
	UNIT 1: FOUNDATION	cs	calculator, completing sq). Solving quadratics in context (which may include evaluating the use of quadratics & lines as modelling tools). Quadratic equations in a function of the unknown (Hidden Quadratics) Hidden quadratics within indices, trigonometric expressions etc. Completing the square Sketching inc. vertex/turning point, roots.	solving methods for quadratics Completing the square with non-integer numbers	Hidden quadratics exam questions (OCR): Core 1 Winter 2012 #5 Core 1 Winter 2008 #4 Hidden quadratics worksheet Integral resource: (Matching quadratic graphs) (Solutions)	

		Working backwards from sketch to equation. Completing the square with non-integer numbers (i.e. context)	Sketching quadratics from the completed square form.	Underground Maths resource: (linked to quadratic graphs) https://undergroundmathematics.org/quadratics/which-quadratic	
		The discriminant of a quadratic function, including the conditions for real and repeated roots. Know where the discriminant comes from, Solving given unknowns, situations (e.g. an unknown such that one function is tangent to another)	Basics of the discriminant – where it comes from.	MyMaths link (sections 8 and 9): https://app.mymaths.co.uk/587-lesson/quadratic-graphs-2 Risp resource: (second Venn Diagram activity) http://www.s253053503.websitehome.co.uk/risps/risp10.html Underground Maths resource (Quadratics): Discriminating At the end of this topic, the following Kahoot could be used: https://create.kahoot.it/details/duplicate-of-c1-algebra-and-quadratics/72b2a01a-0477-4067-98c8-7ace17d9e472	-
3	Inequaliti es	Solve linear and quadratic inequalities in a single variable and interpret such inequalities graphically Solving standard expressions: $ax + b > cx + d$, $px^2 + qx + r \ge 0$ Solving expressions such as $px^2 + qx + r < ax + b$ and recognising this as the range of x for which the curve $y = px^2 + qx + r$ is below the equation $y = ax + b$ Including inequalities with brackets and fractions $(e. g. \frac{4}{y} > 3)$ Express inequalities through the correct use of 'and' and 'or' or through set notation. Appropriate uses for \cup and \cap , $\{x: x > a\}, x \in \mathbb{R}$ etc. Be able to simplify set notation expressions into single sets. Be able to represent, and interpret, inequalities graphically. Shading and use of dotted and solid line convention is required.	Inequalities solving – the basics. Basic set notation Basic inequality sketching	 Exam questions (OCR): Core 1 Summer 2016 #9 Core 1 Summer 2015 #8 Core 1 Winter 2012 #9 MyMaths link: (Quadratic inequalities; exam question in section 9) https://app.mymaths.co.uk/566-lesson/quadratic-inequalities (Linear and Quadratic inequalities on graphs; sections 4 and 9) https://app.mymaths.co.uk/5862-lesson/linear-and-quadratic-inequalities Integral resources: (Venn Diagrams task linked to quadratic inequalities) https://mei.org.uk/files/sow/03-equations-and-inequalities-res.pdf (Quadratic inequalities triangular jigsaw) https://2017.integralmaths.org/pluginfile.php/16577/mod_book/chapter/622/QuadinequalTriangleJigSol.pdf 	2
4 TEST 1	Algebra 1	Manipulate polynomials algebraically, including expanding brackets and collecting like terms.Factorisation and simple algebraic division Four operations on algebraic fractions Simplify rational expressions, including by factorising and cancelling. Linear or of rational expressions	Basic operations on fractions	Algebraic simplification exam questions (OCR): • Core 4 Winter 2009 #1 • Core 4 Summer 2012 #1 • Core 4 Summer 2014 #1 • Core 4 Summer 2011 #1 (good large whiteboards activity, tackling these four)	3

		Factorise expressions such $x^3 + 3x^2 - 4$ and $6x^3 + 11x^2 - x - 6$ Use of the factor theorem and algebraic division Algebraic division by linear expressions only. As applied to cubics (sketching cubics)	Factorising cubics	 Factor Theorem / algebraic division exam questions (OCR): Core 2 Summer 2009 #7 Core 2 Winter 2010 #6 Integral resource: (true or false activity linked to factor theorem and cubic graphs) https://2017.integralmaths.org/pluginfile.php/16660/mod_book/chapter/639/Poly_TrueFalse.pdf Converted into a MS Forms you could <u>duplicate using this link</u>. Underground Maths resource: (linked to cubic graphs) 	
	Graph \Sketchin g	Understand and use graphs of functions, sketch curves definted by simple equations Sketch graphs of $y = \frac{a}{x}$, $y = \frac{a}{x^2}$, $y = a^x$, $y = \sqrt{x}$, quadratics, cubics, quartics Including asymptotes (and equations of), intercepting points with coordinate axes. Strategies for sketching unfamiliar graphs. Intercepts, asymptotes, as x increases Interpret algebraic solution of equations graphically; use intersection points of graphs to solve equations. Understand and use proportional relationships and their graphs Sketching from a context/modelling a situation given information (e.g. the circumference of a circle is proportional to its diameter)	This content could be taught 'flipped'	Intps://undergroundmathematics.org/polynomials/can-you-inid-cubic-edition MyMaths links: (matching activity in section 6) https://app.mymaths.co.uk/583-lesson/sketching-graphs (matching activity in section 9) https://app.mymaths.co.uk/584-lesson/square-root-and-reciprocal-graphs Underground Maths resource: (useful teaching / learning points linked to asymptotes) https://undergroundmathematics.org/thinking-about-functions/approaching-asymptotes	
5	Graphs Transfor mations	Understand the effect of simple transformations on the graph of $y = f(x)$, including sketching associated graphs The effect of $f(ax)$, $af(x)$, $f(x+a)$ and $f(x) + a$ on graphs Describe the transformation given the equation (including multi-ways) State the resulting coordinates of a specified point and transformation Describe the transformation given the graphs	How to sketch the graphs	Exploring transformations: Desmos Classroom Activity MyMaths link: (linked to translations; section 9) https://app.mymaths.co.uk/585-lesson/transforming-graphs-part-1 Integral resources: (linked to transformations of y = x ²) https://2017.integralmaths.org/pluginfile.php/16677/mod_book/chapter/643/QuadraticGraph s_Trans.pdf (Transformations team challenge) https://2017.integralmaths.org/pluginfile.php/16677/mod_book/chapter/643/Trans.pdf (Solutions) https://2017.integralmaths.org/pluginfile.php/16677/mod_book/chapter/643/Trans.pdf	4

				 (linked to transformations of a 'non-standard' function) https://mei.org.uk/files/sow/07-graphs-and-transformations-res.pdf Exam question (OCR): Core 1 Summer 2017 #4 At the end of the topic, or in the next few weeks, the following Kahoot could be used: "C1 Transformations" https://create.kahoot.it/details/c1-transformations/6afa2df4-b29b-4f65-9ef5-c55edc9e5bad 	
6	Coordina te Geometry PR teachers	Understand and use the equation of a straight line, including the forms $y - y_1 = m(x - x_1)$ and $ax + by + c = 0$ Be able to use the above construction form and information in a variety of forms to create the equation of a line (e.g. given two points, given gradient and point) Equation of perpendicular bisector Gradient conditions for two straight lines to be parallel or perpendicular. Be able to use straight line models in a variety of contexts.	Early aspects of this to be drip- fed into early homeworks e.g. finding midpoints, lengths of lines, parallel and perpendicular lines.	Coordinate Geometry Skills check form (revision?) Exam questions (OCR): • Core 1 Summer 2013 #8 • Core 1 Winter 2013 #6 • Core 1 Summer 2015 #5 • Core 1 Winter 2012 #8 Integral Resources: (matching equations activity) https://2017.integralmaths.org/pluginfile.php/16589/mod_book/chapter/624/Teach_Lines_M atchEqns1.pdf (solutions) https://2017.integralmaths.org/pluginfile.php/16589/mod_book/chapter/624/Teach_Lines_M atchEqns1_soln.pdf (another matching equations activity) https://2017.integralmaths.org/pluginfile.php/16589/mod_book/chapter/624/Teach_Lines_M atchEqns2_pdf (solutions) https://2017.integralmaths.org/pluginfile.php/16589/mod_book/chapter/624/Teach_Lines_M atchEqns2_pdf (solutions) https://2017.integralmaths.org/pluginfile.php/16589/mod_book/chapter/624/Teach_Lines_M atchEqns2_soln.pdf	5
	Circle geometry	Understand and use the coordinate geometry of the circle including using the equation of a circle in the form $(x-a)^2 + (y-b)^2 = r^2$ Complete the square to find the centre and radius of a circle		 Exam questions (OCR): Core 1 Summer 2015 #10 Core 1 Summer 2012 #10 Core 1 Winter 2011 #9 (good large whiteboards activity, tackling these three) 	

			Use the following properties: The angle in a semicircle is a right angle, The perpendicular from the centre to a chord bisects the chord, The radius of a circle at a given point on its circumference is perpendicular to the tangent to the circle at that point. Use the above to find the circumcircle of a triangle with given vertices. Other geometric problems The distance from a point to the circumference of a circle The length of a line from a point outside of the circle to a point on the circle.	MyMaths links: (could use sections 4 and 9) https://app.mymaths.co.uk/581-lesson/equations-of-circles (exam question in section 7) https://app.mymaths.co.uk/582-lesson/circle-geometry Integral Resources: (matching equations of circles to graphs) https://2017.integralmaths.org/pluginfile.php/16605/mod_book/chapter/628/Teach_Circles_Equations.pdf (solutions) https://2017.integralmaths.org/pluginfile.php/16605/mod_book/chapter/628/Teach_Circles_Equations_solns.pdf (finding equations of circles to meet set criteria) https://2017.integralmaths.org/pluginfile.php/16605/mod_book/chapter/628/Teach_Circles_Equations_solns.pdf (finding equations of circles to meet set criteria) https://2017.integralmaths.org/pluginfile.php/16605/mod_book/chapter/628/Teach_Circles_Grid.pdf Underground Maths resource: ('Teddy Bear') https://undergroundmathematics.org/circles/teddy-bear	
HT		Understand Know the p techniques a Be able to c	and use key terminology (consensus, population, sample, statistics) ros and cons of sampling vs consensus Be able to select and use diffe and know that they give differing results. lean data: dealing with missing data, errors, outliers.	erent sampling https://2017.integralmaths.org/pluginfile.php/16838/mod_book/chapter/670/Sampling_match	
7	UNIT 2: INTRO TO APPLIED	suvat & vt graphs	Understand and use fundamental quantities and units in the S.I. system: length, time Understand and use derived quantities and units: velocity, acceleration, May be required to convert between units (e.g. km h ⁻¹ to m s ⁻¹) Understand and use the language of kinematics: position; displacement; distance travelled; velocity; speed; acceleration. Understand, use and interpret graphs in kinematics for motion in a straight line: displacement against time and interpretation of gradient; velocity against time and interpretation of gradient and area under the graph.	MyMaths links: 6 (Kinematics formulae. Three questions in section 4.) 6 https://app.mymaths.co.uk/870-lesson/kinematics-formulae 6 (Motion in a vertical plane. Two questions in section 4.) 6 https://app.mymaths.co.uk/871-lesson/motion-in-a-vertical-plane 6 Integral resources: 7 (Velocity-time graph activity; good for a team challenge) 6 https://2017.integralmaths.org/pluginfile.php/16942/mod_book/chapter/692/Teach_Motion_l 1 abelgraph.pdf 7 (SUVAT; creating worded problems from given information.) 6 https://2017.integralmaths.org/pluginfile.php/16956/mod_book/chapter/695/ConstaccCreatin 6 g.pdf 7	5

		May require solving for unknowns (e.g. time or velocity), and comparing multiple particles on different journeys Understand & derive the formulae for constant acceleration for motion in a straight line. Use a velocity-time graph to derive the 5 'suvat' equations. These are given in the formula book and do no need to be memorised.	Underground Maths resource: (addressing the difference between speed and velocity) https://undergroundmathematics.org/introducing-calculus/speed-vs-velocity	
8 TEST 2	Descripti ve Statistics I Wed PM - -> no lessons OPEN EVENIN GS/ Progress Review Days	Be able to draw and interpret histograms, frequency polygons, box and whisker plots (with outliers) and cumulative frequency diagrams. (N.B. outlier formula will be specified in question) Interpret diagrams for single variable data – draw simple inferences, give interpretations to diagrams Calculate measures of central tendency (mean, median, mode) and variation (variance, standard deviation, range, interpercentile ranges) including linear interpolation Introduce the large data set. Give each student a copy of double-sided JDH resource.	 Kahoots: (following up work on sampling) "Sampling Methods" https://create.kahoot.it/details/sampling-methods/19de27fc-2a43-415b-aaa6-0de9e196c8f4 "AS Maths Sampling" https://create.kahoot.it/details/as-maths-sampling/29801d97-cba5-4d16-bce6-87497b58201f Desmos sampling task to experience effect of different sampling techniques https://teacher.desmos.com/activitybuilder/custom/6447dfe1e5af8114e853c5fe?collections= 6447db4a76449e478195d07d Exam questions (OCR): Stats 1 Summer 2018 #5 Stats 1 Summer 2017 #5 Stats 1 Summer 2015 #2 Stats 1 Summer 2012 #3 Stats 1 Summer 2014 #1 Stats 1 Summer 2010 #6 Integral Resources linked to the large data set: (Histograms / Cumulative Frequency matching activity) https://2017.integralmaths.org/pluginfile.php/28903/mod_book/chapter/2625/Edexcel_Group edData_Matching.pdf (Answers) https://2017.integralmaths.org/pluginfile.php/28903/mod_book/chapter/2625/Edexcel_Group 	7
9 RW	Descripti ve Statistics II	Give interpretations to measures of central tendency and variation for discrete, continuous, grouped and ungrouped data. Look at the effect of adding or removing data on the mean/median etc.	edData Matching_answers.pdf Exam questions (OCR) • • Stats 1 Summer 2016 #3 • Stats 1 Summer 2013 #4 • Stats 1 Summer 2012 #2	8

					_
		Evaluated which measure is appropriate to use		• Stats 1 Winter 2012 #5	
	No	Understand and use coding and its effects on measures.		• Stats 1 Summer 2011 #4	
	lessons	Be aware of skew (N.B. skew is not explicitly mentioned in			
	Monday	the spec but is suggested in mark schemes as a tool for		Integral Resource	
	(pastoral	comparing data)		(Histograms)	
	day)	Histograms		https://mei.org.uk/files/sow/14-data-processing-presentation-interpretation-res.pdf	
	57	Scaling problems (e.g. actual height/width)			
		Assumptions regarding the distribution of data within			
		the bars.			
10	Radian	Radian measure		Maths links:	9
	measure	TOOLS (to be completed as an independent learning project)		That is a radian?' - section 1)	
	&	Work with radian measure, including use for arc let	ngth and area of	s://app.mymaths.co.uk/662-lesson/radians-arcs-areas	
	TOOLS	sector in problems.	-g u u u u u	am question linked to area of sector – section 9)	
	10020	Use area of triangle formula $A = \frac{1}{2} ah \sin C (T)$		s://app.mymaths.co.uk/662-lesson/radians-arcs-areas	
	Parents	Use area of triangle formula $A = \frac{-ab}{2} \sin c (1)$		sin upp in finansioonal ood resson radians area areas	
	Eve	Use area of sector formula $A = \frac{1}{2}r^2\theta$ (O)		egral Resources.	
	Tuesday	Use are length formula $l = r\theta(\Omega)$		dians and degrees matching)	
	ruesduy	Use arc length formula $t = T \theta'(0)$		s://2017 integralmaths org/pluginfile.php/35664/mod_book/chapter/968/Radians_RadDeg.pdf	
		Use cosine rule (L) and sine rule (S)		5.72017.mcgtunnuus.org/pragmine.pnp/55004/mod_660k/enuper/560/Rudhuns_Rudbeg.pdf	
		Explore the ambiguous case of the sine rule.		cs and Sectors" (ideal for a paired / team challenge)	
		L O		s://mei org.uk/files/sow/22-trigonometry-res.ndf	
				s.//net.org.uk/mes/sow/22-urgonometry-res.pur	
				m questions (OCR)	
				Core 2 Summer 2014 #1 and #2	
				• Core 2 Summer 2014 #1 and #5	
				• Core 2 Summer 2018 #6	
				• Core 2 Summer 2017 #5	
				• Core 2 Summer 2015 #3	
				• Core 2 Summer 2013 #5	
				p resource:	
				://www.s253053503.websitehome.co.uk/risps/risp23.html	
11	Probabili	Tree diagrams, Sample spaces, Venn diagrams		Integral Resources	10
	ty	Independent/dependent, mutually exclusive events.		(Venn Diagram matching activity)	
		Be able to know and use probability notation including		https://2017.integralmaths.org/pluginfile.php/16871/mod_book/chapter/680/VennMatch.pdf	
	INSET -	understanding and using the conditional probability formula		(Answers)	
	Tues			https://2017.integralmaths.org/pluginfile.php/16871/mod_book/chapter/680/VennMatchSol.	
				pdf	
				(Conditional probability activity)	
				https://2017.integralmaths.org/pluginfile.php/110588/mod_book/chapter/1593/ConditionalPr	
				<u>ob.pdf</u>	
				(Answers)	

UNIT 3: BIG CORE TOPICS	Calculus	calculus from first principles, gradient at a limit, interpret as rate of change Be able to differentiate polynomials Sketch the gradient function and use gradient function to sketch original function	Basics of differentiation	https://2017.integralmaths.org/pluginfile.php/110588/mod_book/chapter/1593/ConditionalPr ob_soln.pdf (Tarsia puzzle on probability: ideal for a team challenge) https://2017.integralmaths.org/pluginfile.php/110588/mod_book/chapter/1593/ProbabilityHe xJig_Soln.pdf Risp resources: (all three are linked to independent events) http://www.s253053503.websitehome.co.uk/msv/msv-25.html http://www.s253053503.websitehome.co.uk/msv/msv-25.html http://www.s253053503.websitehome.co.uk/msv/msv-25.html http://www.s253053503.websitehome.co.uk/msv/msv-25.html http://www.s253053503.websitehome.co.uk/msv/msv-25.html MyMaths link: (three good questions linked to conditional probability, in sections 4, 5 and 6) https://app.mymaths.co.uk/831-lesson/conditional-probability Exam questions (OCR) • Stats 1 Summer 2017 #2 • Stats 1 Summer 2017 #2 • Stats 1 Summer 2013 #8 • Stats 1 Summer 2014 #7 • Stats 1 Summer 2013 #8 • Stats 1 Summer 2014 #7 • Stats 1 Summer 2013 #8 • Stats 1 Summer 2013 #8 • Stats 1 Summer 2013 #8 • Stats 1 Summer 2014 #7 • Stats 1 Summe	
-------------------------	----------	--	------------------------------	--	--

			(matching activity linked to the shape of the curve of the gradient function)	
			https://undergroundmathematics.org/introducing-calculus/gradient-match	
12 TEST 3	Calculus II	Gradient at a point, Equations of tangent/normal Increasing and decreasing functions The second derivative, stationary points. Links graphically Optimisation problems	MyMaths link: (good optimisation problem in section 9) https://app.mymaths.co.uk/5876-lesson/maxima-and-minima Integral Resources (matching activity) https://2017.integralmaths.org/pluginfile.php/16708/mod_book/chapter/650/Diff_Gradients.p df (answers) https://2017.integralmaths.org/pluginfile.php/16708/mod_book/chapter/650/Diff_Gradients_soln.pdf (Differentiation of Rational Functions matching activity) https://2017.integralmaths.org/pluginfile.php/16718/mod_book/chapter/652/Diff_Rational.p df (answers) https://2017.integralmaths.org/pluginfile.php/16718/mod_book/chapter/652/Diff_Rational.p df (answers) https://2017.integralmaths.org/pluginfile.php/16718/mod_book/chapter/652/Diff_Rational_S oln.pdf (matching activity linked to stationary points; potential paired / team challenge) https://2017.integralmaths.org/pluginfile.php/16727/mod_book/chapter/654/Diff_Stationary.pdf (answers) https://2017.integralmaths.org/pluginfile.php/16727/mod_book/chapter/654/Diff_Stationary.pdf (answers) https://2017.integralmaths.org/pluginfile.php/16727/mod_book/chapter/654/Diff_Stationary_rog/f	
13	Trig I Teacher's	Their graphs (derived from the circle), symmetry and periodicity. The effect of graph transformations on these functions & the	Underground Maths resource: (a range of activities linked to tangents and normals) https://undergroundmathematics.org/calculus-of-powers/tangent-or-normal Exam questions (OCR) • Core 1 Summer 2012 #6 • Core 1 Winter 2011 #8 • Core 1 Summer 2018 #10 • Core 1 Summer 2016 #11 MyMaths links: (questions relating to the sine and cosine graphs, in section 7 and transformations of these, in section 10) Interval	12
	PR	links between them.	https://app.mymaths.co.uk/657-lesson/sine-and-cosine-graphs	

	Term ends on Thurs	Solving simple trig problems in given range Up to e.g. $\sin \left(2x - \frac{\pi}{6}\right) = \frac{1}{2}$ RECAP special triangles exact value problems Context such as tides/hours of sunlight Derivation and use of identities $(\sin^2 x + \cos^2 x) \equiv 1$ and $\frac{\sin x}{\cos x} = \tan x$		(questions relating to transformations of the tan graph, in section 7) https://app.mymaths.co.uk/658-lesson/tangent-graphs Integral Resources (trig equations true or false) https://2017.integralmaths.org/pluginfile.php/16629/mod_book/chapter/633/TrigEq_TrueFal se.pdf (answers) https://2017.integralmaths.org/pluginfile.php/16629/mod_book/chapter/633/TrigEq_TrueFal se. Soln.pdf (matching activity linked to trig equations) https://2017.integralmaths.org/pluginfile.php/16629/mod_book/chapter/633/TrigEq_Match.p df (answers) https://2017.integralmaths.org/pluginfile.php/16629/mod_book/chapter/633/TrigEq_Match.p df (answers) https://2017.integralmaths.org/pluginfile.php/16629/mod_book/chapter/633/TrigEq_Match.p df (find the errors in solving trig equations) https://2017.integralmaths.org/pluginfile.php/16629/mod_book/chapter/633/TrigEq_Errors.p df Exam questions (OCR) • Core 2 Winter 2008 #9 • Core 2 Winter 2013 #2 • Core 2 Summer 2013 #5 • Core 2 Summer 2014 #4 • Core 2 Summer 2017 #9 At the end of this topic, the following Kahoot could be used: (16 que	
хн			MECHANICS CI	HRISTMAS PACK	

14		Mop Up			13
		Term			
		starts on			
		Tues			
15		Force	Understand and use fundamental quantities and units in	Useful videos from Hannah's web-site:	14
		Diagrams	the S.I. system: mass, gravity	https://mathsroots.weebly.com/m-modellingforce-diagrams.html	
			Understand and use derived quantities and units: velocity,		
		PR Day	acceleration, force, weight, acceleration due to gravity.	MyMaths links:	
		Weds	Understand the limitations of models. List the	(sections 1 and 2 good in supporting explanation of Newton's first law)	
		Parants	assumptions made when modeling (particle – centre of mass is in the centre of the object) air resistance is	https://app.mymains.co.uk/8/4-lesson/newton-s-mst-naw	
		evening	negligible, resistive forces are constant.	(sections 1 and 2 good in supporting explanation of Newton's second law)	
			Understand that while g is assumed constant (9.8 m s ^{-1}	https://app.mymaths.co.uk/875-lesson/newton-s-second-law	
			²) it is not a universal constant but depends on location.		
	Ś		Understand the concept of a force: normal reaction,	(good questions linked to friction, in sections 3, 4, 5 and 6)	
	00		tension, thrust or compression, resistance	https://app.mymaths.co.uk/885-lesson/limiting-friction	
	εL		Understand and use Newton's first law.	Teteres Incommunity	
	SS		Understand and use Newton's second law for motion	Integral resources: (Solutions linked to questions on Newton's second law; spot the errors)	
	AM		acting parallel and/or perpendicular to the motion	https://2017 integralmaths.org/pluginfile.php/39828/mod_book/chapter/1214/N2L_2D_spott	
	GR/		Extend to situations where the forces need to first be	heerror.pdf	
	IAC		resolved.		
	D		Understand and use Newton's third law and use to	(activity linked to friction; draw force diagrams, given equations.)	
	CE		solve problems in equilibrium.	https://2017.integralmaths.org/pluginfile.php/39863/mod_book/chapter/1222/Friction_diagra	
	ÔF		Understand and use the $F \le \mu R$ model for friction;	<u>m.pdf</u>	
16	4: F	Force	Be able to calculate the coefficient of friction and use		15
TECT	Ē	Diagrams	within a question \mathbf{R}		
1651	N	Parants	surface will imply friction		
MYE		Evening	Know what limiting friction is and when to apply it		
		8	Use frictional forces within statics questions. (e.g. F		
			= μ R when moving, F $\leq \mu$ R when in equilibrium		
17		Logs &	The function a^x and it's graph, for $a > 0$	MyMaths links:	16
		exponenti	Understand the difference in shape between $a < a$	(matching pairs game in section 9, using log laws)	
		als	1 and a > 1	https://app.mymauls.co.uk/009-lesson/rules-01-l0gs	
		2A	1 and u > 1	(good example of a real-life question requiring use of logs to solve, in section 1)	1
		Midyears	Solve equations of the form $a^x = b$	https://app.mymaths.co.uk/670-lesson/log-equations	
		-	Log rules		

		$\log_a x + \log_a y = \log_a xy$ $\log_a x - \log_a y = \log_a \frac{x}{y}$ $k \log_a x = \log_a x^k$ Know and use the definition of $\log_a x$ as the inverse of a^x , where <i>a</i> is positive and $x \ge 0$. Know and use the function $\ln x$ and its graph Know and use $\ln x$ as the inverse function of e^x . Solutions of equations of the form $e^{ax+b} = p$ and $\ln(ax+b) = q$	(matching pairs activity in section 5, relating to natural logs and exponentials and equations to solve in sections 6 and 8) https://app.mymaths.co.uk/674-lesson/the-natural-log Integral Resources: (Tarsia Puzzle linked to log laws; solutions at the end) https://2017.integralmaths.org/pluginfile.php/16770/mod_book/chapter/664/LogarithmsHexJ igSol.pdf (logs 'odd one out') https://2017.integralmaths.org/pluginfile.php/16770/mod_book/chapter/664/Logs_Odd.pdf (logs 'true or false') https://2017.integralmaths.org/pluginfile.php/16770/mod_book/chapter/664/Logs_TrueFalse.pdf Exam questions (OCR) • Core 2 Summer 2010 #8 • Core 2 Winter 2010 #8 • Core 2 Summer 2016 #4 • Core 2 Summer 2015 #8 • Core 2 Winter 2013 #8
18	e & In	Know and use the function e^x and its graphIncluding $y = e^{ax+b} + c$ Know that the gradient of e^{kx} is equal to ke^{kt} and hence understand why the exponential model issuitable in many applications.Modelling exponential growthE.g. use of e in continuous compound interest,radioactive decay, population growthBe able to find constants in models.Understand terms such as 'initial' meaning $t = 0$ Consideration of the limitations of refinements of themodels including considering a second improvedmodel.Explore behaviour for large values of t or to considerwhether the range of values predicted is appropriate	MyMaths link: 17 (matching activity in section 5, relating to graphs of exponential functions) 11 https://app.mymaths.co.uk/673-lesson/exponential-function 17 (good explanation of exponential growth and decay in sections 1 and 2, followed by real-life questions in sections 3 and 4) 11 https://app.mymaths.co.uk/676-lesson/growth-and-decay 10 Exam questions (OCR) 0 Core 3 Winter 2013 #4 0 Core 3 Summer 2007 #5 0 Core 3 Winter 2009 #5 0 Core 3 Summer 2014 #5 0 Core 3 Winter 2012 #7 10

19		Connecte d Particles	Consideration of limitations and refinement of exponential models. Be able to use within context e.g. continuous compound interest, radioactive decay, population growth. Understand and use fundamental quantities and units in the S.I. system: mass Understand and use derived quantities and units: acceleration, force, weight, Newton's second and Newton's third laws may be extended to problems involving smooth pulleys and connected problems. Further problems could involve contact problems (e.g. lift problems). All cases could include where forces need to be resolved (e.g. at least one of the particles is moving on an inclined plane.) Understand and use addition of forces; resultant forces; dynamics for motion in a plane. May be required to resolve a vector into two components or use a vector diagram May be required to use triangles (and sine/cosine rules) Problems may involve two or more forces. Forces may be given in magnitude – direction form.	MyMaths links: (good examples, to use with the whole class, in sections 5 and 6, linked to pulleys, and in section 2, linked to lifts.) https://app.mymaths.co.uk/876-lesson/connected-bodies Dea's connected particles practice activities Integral resources: (good questions throughout this exercise) https://2017.integralmaths.org/pluginfile.php/18268/mod_resource/content/0/edexcelasmf3a x_level1.pdf (answers) https://2017.integralmaths.org/pluginfile.php/18299/mod_resource/content/0/edexcelasmf3a xw_level1.pdf (also, good questions in this exercise, including applying SUVAT within connected particles questions) https://2017.integralmaths.org/pluginfile.php/18269/mod_resource/content/1/edexcelasmf3a x_level2.pdf (answers) https://2017.integralmaths.org/pluginfile.php/18269/mod_resource/content/1/edexcelasmf3a x_level2.pdf (answers) https://2017.integralmaths.org/pluginfile.php/18269/mod_resource/content/1/edexcelasmf3a x_level2.pdf (answers) https://2017.integralmaths.org/pluginfile.php/18301/mod_resource/content/0/edexcelasmf3a	18
НТ				xw_level2.pdf	20
20 TEST 5	UNIT 6: RANDOM TOPICS	Binomial Expansio n	Understand and use the binomial expansion of $(a + bx)^n$ for any value of n $(a + bx)^n$ for positive integer n. Be able to manipulate and use notations n! and nC_r Use in problems where n is unknown Understand nC_r and n! as linked to binomial probabilities. Approximations	Underground Maths Resources: https://undergroundmathematics.org/counting-and-binomials/r6503 https://undergroundmathematics.org/counting-and-binomials/r7477 Exam questions (OCR) • Core 2 Summer 2017 #3 • Core 2 Summer 2016 #3 • Core 2 Summer 2010 #3 • Core 2 Winter 2010 #3 • Core 2 Winter 2009 #7	19
21	N	DRVs	One lesson on DRVs and uniform distributions	MyMaths link: (Drvs)	

	Binomial Distributi on	Calculate probabilities, mean and variance of binomial distribution Model real world & appropriateness of the model.	 (two good exam questions, in sections 7 and 8, and a good activity relating to a spinner, in section 9) https://app.mymaths.co.uk/845-lesson/probability-distributions Integral Resources: (Drvs) (card sort) https://2017.integralmaths.org/pluginfile.php/16883/mod_book/chapter/682/DRV_match.pdf MyMaths link: (Binomial Distribution) (good question in section 9) https://app.mymaths.co.uk/839-lesson/binomial-distribution (good question in section 7) https://app.mymaths.co.uk/840-lesson/cumulative-probabilities Integral Rescources: (Binomial Distribution) (matching activity: potential team challenge) https://2017.integralmaths.org/pluginfile.php/16894/mod_book/chapter/684/BinProb_events.pdf (answers) https://2017.integralmaths.org/pluginfile.php/16894/mod_book/chapter/684/BinProb_events Soln.pdf (Tarsia Puzzle) https://2017.integralmaths.org/pluginfile.php/16894/mod_book/chapter/684/BinOmialProbHe xJigSol.pdf Exam questions (OCR) Stats 1 Summer 2017 #8 Stats 1 Summer 2017 #7 (All of these four questions include a binomial arising from within the original binomial.) 	
22	Calculus III	Know and use the fundamental theorem of Calculus. Understand and use integration as the limit of a sum i.e. $\int_{a}^{b} f(x) dx = \lim_{\delta x \to 0} \sum_{x=a}^{b} f(x) \delta x$ Integration of $ax^{n}, n \neq -1$. Indefinite and with limits Find areas under curves	Introducing area under curve: <u>Approximating areas (Underground maths)</u> Consolidating integration with limits: <u>Integral Chasing (Underground maths)</u>	_

23	Non- constant accelerati on			
24 TEST 6	Hypothes is Testing PR teachers	Understand and apply the language of statistical hypothesis testing through the binomial distribution (H _o , H ₁ , significance level, test statistics, 1 & 2 tailed test, critical values & regions, accepted value, p-value).		
(26)	Vectors Parents eve	Use vectors in two dimensions Students should be familiar with column vectors and with the use of i and j unit vectors in two dimensions Calculate the magnitude and direction of a vector and convert between component form and magnitude/direction form. Students should be able to find a unit vector in the direction of a, and be familiar with the notation a . Add vectors diagrammatically and perform the algebraic operations of vector addition and multiplication by scalars, and understand their geometrical interpretations. The triangle and parallelogram laws of addition. Parallel vectors. Understand and use position vectors; calculate the distance between two points represented by position vectors. $\overrightarrow{OB} - \overrightarrow{OA} = \overrightarrow{AB} = b - a$ The distance <i>d</i> between two points (x_1, y_1) and (x_2, y_2) is given by $d^2 = (x_1 - x_2)^2 + (y_1 - y_2)^2$ Use vectors to solve problems in pure mathematics For example, finding position vector of the fourth corner of a shape (e.g. parallelogram) ABCD with three given position vectors for the corners A, B and C. Or use of ratio theorem to find position vector of a point C dividing AB in a given ratio. Revision	Fluency exercise: <u>Hit the spot (Underground maths)</u>	
EH				
27 TEST 7	FULL WEEK	Revision		

28		Revision					
29	Bank Holiday Friday	Revision					
(30)		TRANSFER EXAM: Single Maths TRANSFER EXAM: Double Maths 1					
(31)		TRANSFER EXAM: Double Maths 2					
HT							
(32)		FUNCTIONS INDEPENDENT LEARNING PACK					
33		Functions - Mapping, Domain and Range - Composite Functions - Inverse Functions - Modulus Functions					
		 Modulus Functions Successive Transformations Partial fractions inc. where degree of the numerator > degree of the denominator, repeated factors. 					
35		Differentiation - Chain rule - Connected rates of change					
36		Differentiation Product rule Quotient rule					
37							